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Abstract

Warehouse views need to be updated when source

data changes. Due to the constantly increasing size

of warehouses and the rapid rates of change, there

is increasing pressure to reduce the time taken for
updating the warehouse views. In this paper we focus

on reducing this \update window" by minimizing the

work required to compute and install a batch of updates.

Various strategies have been proposed in the literature

for updating a single warehouse view. These algorithms

typically cannot be extended to come up with good

strategies for updating an entire set of views. We

develop an e�cient algorithm that selects an optimal

update strategy for any single warehouse view. Based

on this algorithm, we develop an algorithm for selecting

strategies to update a set of views. The performance of

these algorithms is studied with experiments involving

warehouse views based on TPC-D queries.

1 Introduction

Data warehouses derive data from remote informa-
tion sources in support of on-line analytical process-
ing (OLAP). One of the main problems is updat-

ing the derived data when the remote information
sources change. During a warehouse update, called
the \update window," either OLAP queries are not

processed or OLAP queries compete with the ware-
house update for resources. To reduce OLAP down
time or interference, it is critical to minimize the
work involved in a warehouse update and shrink

the update window.

The derived data at the warehouse is often stored
in materialized views. Previous work ([6], [14])

has developed standard expressions for maintain-
ing a large class of materialized views incremen-
tally. However, there are still numerous alter-

native \strategies" for implementing these expres-
sions, and these strategies incur di�erent amounts
of work and lead to di�erent update windows.

EXAMPLE 1.1 Let us consider the warehouse
depicted by the directed acyclic graph (DAG)
shown in Figure 1. There are four materialized

views: CUSTOMER, ORDER, LINEITEM, and
V. The edge from V to CUSTOMER indicates
that view V is de�ned on view CUSTOMER
(and similarly for the other edges). Unlike V,

the CUSTOMER, ORDER and LINEITEM views
are de�ned on remote and possibly autonomous
information sources.

Periodically, the changes (i.e., inserted, deleted

and updated tuples) of CUSTOMER, ORDER and
LINEITEM are computed from the changes of
remote information sources. View maintenance
algorithms that handle remote and autonomous

sources, like the ones developed in [17], may be
used. Once the changes of these views are obtained,
the changes of V need to be computed, and the

changes of all the views need to be installed. There
are many ways to perform these update tasks using
standard view maintenance expressions.

One strategy for updating V , denoted Strategy 1,
is (as in [3]):

1. Compute the changes of V considering at once

all the changes ofCUSTOMER,ORDER, LINE-
ITEM, and using the prior-to-update states of
these views.

2. Install the changes of all four views. Installation
of changes involves removing deleted tuples and

adding inserted tuples.
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Figure 1: Example DAG of Materialized Views
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Figure 2: More Complex DAG

In Strategy 2, the changes of V are computed
piecemeal, considering the changes of each of its
base views one at a time:

1. Compute the changes of V only considering the
changes of CUSTOMER (and the original state
of the views).

2. Install the changes of CUSTOMER. (The fol-
lowing steps will see this new state.)

3. Compute the changes of V only considering the
changes of ORDER.

4. Install the changes of ORDER. (This new state
will be seen by the next step.)

5. Compute the changes of V only considering the
changes of LINEITEM.

6. Install the changes of LINEITEM.

7. Install the changes of V.

In [8], the correctness of both these strategies
was discussed. Speci�cally, it was shown that both
strategies compute the same �nal \database state"
(i.e., extension of all warehouse views). However, it

was not shown how to choose among the strategies.
The strategies can result in signi�cantly di�erent
update windows as con�rmed by our experiments.

For the simple DAG of Figure 1, there are 11
strategies in addition to Strategies 1 and 2. For
instance, a slight variant of Strategy 2 computes the

changes of V based on the changes of LINEITEM
�rst, then ORDER, and then CUSTOMER. In
some cases, this variant may have a shorter update

window than Strategy 2. 2

The previous example illustrated that even for
a single view, there are many update strategies.

Finding optimal strategies for a single view is a
challenge we address in this paper. In the next
example, we illustrate that the update strategies for
a DAG of views cannot be constructed by simply

picking the strategies for each view independently.
In this paper, we also address the problem of �nding
optimal strategies for a DAG of views.

EXAMPLE 1.2 Let us consider the DAG shown
in Figure 2. This DAG now includes a second

view V 0 de�ned over CUSTOMER, ORDER and
LINEITEM. Say we update V using Strategy
2 (Example 1.1), and V 0 is updated using the

following Strategy 3:

1. Compute the changes of V 0 only considering the
changes of LINEITEM.

2. Install the changes of LINEITEM. (These changes
are visible to the following step.)

3. Compute the V 0 changes considering the changes
of CUSTOMER and ORDER.

4. Install the changes of CUSTOMER and OR-

DER.

5. Install the changes of V 0.

Note that in Strategy 2, the �fth step occurs
after the changes of CUSTOMER and ORDER,

but not LINEITEM, have been installed. On the
other hand, in Strategy 3 the third step occurs
after the changes of LINEITEM have been installed,

but not the changes of CUSTOMER and ORDER.
Since only one of these states can be achieved,1 we
cannot combine Strategy 2 and Strategy 3. On the
other hand, it is possible to combine Strategy 1 and

Strategy 3 in a consistent manner. 2

The previous example showed that we may not
be able to construct a correct strategy for a DAG

of views by combining independently chosen single
view strategies. Even if we can, the combined
strategy may not be the best among all correct
strategies. In this paper, we de�ne formally the

notion of a correct update strategy for a DAG of
views, and we develop techniques to obtain correct
and e�cient update strategies for a DAG of views.

One could argue that standard database query
optimizers may be able to generate e�cient ware-
house update strategies by leveraging their pro�-

ciency in �nding good plans for a query or even
a set of queries. However, today's query opti-
mizers assume that during the execution of the

queries the database state does not change. As illus-
trated by our examples, warehouse update strate-
gies employ sequences of computation and installa-

tion steps. More importantly, each step may change
the database state, which in turn a�ects the rest of
the steps. Hence, picking the best strategy involves:

� Choosing the set of queries (for update compu-

tations) and data manipulation expressions;

1We do not assume that multiple versions of the ware-

house data are maintained.
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� Sequencing these queries and data manipulation
expressions; and

� Ensuring that the chosen sequence results in the

correct �nal database state.

To our knowledge, query optimizers do not handle

these tasks. As a result, the warehouse administra-
tor (WHA) is often saddled with the task of creat-
ing \update scripts" for the warehouse views. Since
there are many alternative update strategies, the

WHA can easily pick an ine�cient update strategy,
or even worse an update strategy that incorrectly
updates the warehouse. Furthermore, the WHA

may have to change the script frequently, since what
strategy is best depends on the current size of the
warehouse views and the current set of changes.

In this paper, we develop a framework for

studying the space of update strategies. We make
the following speci�c contributions:

� We characterize the correctness and optimality

of update strategies for a DAG of views.

� We develop a very e�cient algorithm called
MinWorkSingle that �nds an update strategy
that minimizes the work incurred in updating

a single materialized view.

� Based on MinWorkSingle, we develop an e�-
cient heuristic algorithm called MinWork that
produces a good update strategy for a general

DAG of materialized views. We show that for a
large class of DAGs, the MinWork update strat-
egy is actually the least expensive.

� Based on performance experiments with a TPC-

D scenario, we demonstrate that theMinWorkS-
ingle and MinWork update strategies shrink the
update window signi�cantly.

2 Preliminaries
Warehouse Model: We model warehouse data
using a view directed acyclic graph (VDAG). Each
node in the graph represents a materialized view

containing warehouse data. An edge (Vj ! Vi)
indicates that view Vj is de�ned over view Vi. If
a view V has no outgoing edges, this indicates that

V is de�ned over remote information sources. For
simplicity, we assume that a view V is de�ned only
over remote information sources, or only over views
at the warehouse. We call views de�ned over remote

sources base views, and views de�ned over other
views (at the warehouse) derived views.

Figure 3 shows a simple example of a VDAG
with three base views (i.e., V1,V2,V3) and two

derived views (i.e., V4, V5). As a more concrete

example, Figure 4 shows the VDAG representation
of a warehouse that contains six TPC-D relations

as base views. In this example, ORDER and
LINEITEM represent \fact tables," and the other
base views represent \dimension tables." The

derived views Q3, Q5 and Q10 represent \summary
tables" de�ned over the TPC-D base views.

We de�ne Level(V ) to be the maximumdistance
of V to a base view. For instance, in Figure 3,

Level(V1) = 0, Level(V4) = 1, and Level(V5) =
2. We use MaxLevel(G) to denote the maximum
Level value of any view in a VDAG G.

View De�nitions and Maintenance Expres-

sions: We associate with each view V a de�ni-

tion Def(V ). View de�nitions in our model involve
projection, selection, join, and aggregation oper-
ations. For instance, views Q3, Q5 and Q10 of Fig-

ure 4 may be de�ned using TPC-D queries that are
SELECT-FROM-WHERE-GROUPBY SQL statements.

An edge (Vj ! Vi) in the VDAG means that
Vi appears in Def(Vj ). Moreover, it implies that

changes of Vi lead to Vj changes. We use delta
relation �V to represent the changes of V .

The changes of the base views arrive periodically
at the warehouse. The changes of the base views

are then used to compute the changes of the
derived views. If V is a derived view, view
maintenance expressions based on Def(V ) are
used to compute �V . For instance, if view

V4 in Figure 3 is de�ned as �P(V2�V3), the
following standard view maintenance expression
([6], [14]) that uses three terms (i.e., �P(�V2�V3),

�P(V2��V3), �P (�V2��V3)) computes �V4.

�V4  �P(�V2�V3) [ �P(V2��V3)

[ �P(�V2��V3) (1)

Actually, the changes of a view V include inserted
V tuples, called plus tuples, and deleted V tuples,
called minus tuples. (In this paper, we represent

an update as a deletion followed by an insertion.)
For simplicity of presentation, we do not show
explicitly the plus tuples and the minus tuples,
instead lumping them together in a single delta

relation. When executing maintenance expressions
like (1), the plus and minus tuples in the delta
relations must be handled \appropriately" [6].

After the changes of a view are computed, they

are used in computing changes of other derived
views, and installed. The install operation inserts
the plus tuples, and deletes the minus tuples.

Compute and Install Expressions: We abstract

maintenance computations by the function Comp.
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Figure 3: Example VDAG
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Figure 4: VDAG of a TPC-D Warehouse

The formula for computing �V from the changes of
the set of views V is denoted by Comp(V;V). For in-
stance, Comp(V4; fV2; V3g) represents the �V4 com-
putation of Expression (1). As another example,

Comp(V4; fV2g) represents the computation of the
changes of V4 based solely on the changes of V2, i.e.,
�V4  �P(�V2�V3). We use Inst(V ) to denote the

operation of installing �V into V .

3 View and VDAG Strategies
We now de�ne view strategies which are used to

update a single view, and VDAG strategies which
are used to update a VDAG of views. We also
illustrate how one can de�ne the space of correct

VDAG strategies based on the notion of correct
view strategies for the individual views. Finally,
we formally de�ne the \total-work minimization"

problem as �nding the correct VDAG strategy that
incurs the minimum amount of work.

3.1 View Strategies
For a view V de�ned over n views V1; : : : ; Vn, there
are many possible ways of updating V . We call

each way a view strategy. One view strategy for
V is to compute �V based on all of the changes
f�V1; : : : ; �Vng simultaneously as shown below.

h Comp(V; fV1; : : : ; Vng); Inst(V1); : : : ;

Inst(Vn); Inst(V ) i (2)

Notice that view strategy (2) has two \stages,"
a stage for propagating the underlying changes
(i.e., using the Comp expression), and a stage

for installing the changes (i.e., using the Inst

expressions). This is consistent with the framework
proposed in [3] that a view is updated using a

propagate stage and an install stage. In this paper,
we call strategies like (2) dual-stage view strategies.

Another possible view strategy for V is to com-
pute �V by considering each �Vi in f�V1; : : : ; �Vng

one at a time, as shown below.

h Comp(V; fV1g); Inst(V1); : : : ;

Comp(V; fVng); Inst(Vn); Inst(V ) i (3)

Each Comp expression in view strategy (3) com-

putes a subset of the changes of V . We assume that

the changes computed by the various Comp expres-
sions for V are gathered in delta relation �V , and
eventually installed together by Inst(V ). We call
view strategies like (3) 1-way view strategies. No-

tice that view strategy (3) propagates the changes
of V1 �rst, then of V2, and so on. For a view de-
�ned over n views, there are a total of n! 1-way

view strategies that can be obtained by using dif-
ferent change propagation orders.

Dual-stage view strategies as well as 1-way view

strategies have been proposed in the literature ([8],
[3]). However, the issue of �nding optimal view
strategies has not been studied.

Beyond the 1-way and dual-stage view strategies,
there is a multitude of other correct view strategies.
To see this, we can look at a 1-way view strategy as

one that partitions f�V1; : : : ; �Vng into n singleton
sets, and processes the sets, one at a time. On
the other hand, a dual-stage view strategy does not
partition f�V1; : : : ; �Vng at all, and processes all the

changes simultaneously. Other ways of partitioning
the view set will yield other view strategies.

Once the partitions are decided upon, the prop-

agation order among the various partitions needs
to be chosen. The combined choices of partitioning
and their order of processing yields numerous view

strategies that incur di�erent amounts of work in
general. For instance, view Q3 de�ned on three
views, Q5 de�ned on 6 views, and Q10 de�ned on 4

views have 13, 4683, and 75 view strategies respec-
tively. Furthermore, we are only counting \correct"
view strategies.

In De�nition 3.1, we formally describe the notion
of correctness of a view strategy. Intuitively,
conditions C1 and C2 state that all the changes
must be propagated and installed by a correct

view strategy. That is, certain Comp and Inst

expressions must be in the correct view strategy.
On the other hand, conditions C3, C4, and C5

state that the Comp and Inst expressions must be
in a particular order. Speci�cally, condition C3

states that �Vi must not be installed until all Comp

expressions that use it are done. Condition C4

4



states that when the changes of V are computed
using multiple Comp expressions, the changes of a

view used in a Comp expression must be installed
before the next Comp expression for V can be
executed. Condition C5 states that the changes

computed for V can only be installed after they
are completely computed. Finally, condition C6

states that there are no duplicate expressions in the

correct view strategy.

De�nition 3.1 (Correct View Strategy) Let
Ei < Ej if expression Ei is before expression Ej

in the view strategy. Given a view V de�ned over a

set of views V, a correct view strategy
�!
E for V is a

sequence of Comp and Inst expressions satisfying
the following conditions.
� C1 8Vi 2 V: Comp(V; f: : :Vi : : :g) 2

�!
E .

� C2 8Vi 2 (V [ fV g): Inst(Vi) 2
�!
E .

� C3 8Vi 2 V: Comp(V; f: : :Vi : : :g) < Inst(Vi).

� C4 8Vi: 8Vj:
(Comp(V; f: : : Vi : : :g) < Comp(V; f: : : Vj : : :g))

) (Inst(Vi) < Comp(V; f: : :Vj : : :g)).

� C5 8Vi 2 V: Comp(V; f: : :Vi : : :g) < Inst(V ).

� C6 8Ei 2
�!
E : 8Ej 2

�!
E : (i 6= j) ) (Ei 6= Ej).

2

Notice that combinations of these conditions
avoid incorrect view strategies that are not explic-

itly prohibited in the conditions. For instance, be-
cause of conditions C3 and C4, it is not possible
to have two Comp expressions that propagate �Vi
[12]. Note also that for a base view V which is not

de�ned over any warehouse views (i.e., V = f g),
V 's correct view strategy is h Inst(V ) i.

3.2 VDAG Strategies
Like a view strategy, a VDAG strategy is simply
a sequence of compute and install expressions.
Informally speaking, a correct VDAG strategy uses
a correct view strategy to update each VDAG view.

EXAMPLE 3.1 Consider the VDAG shown in

Figure 3. A VDAG strategy should indicate how
changes are propagated to all the views. One
possible VDAG strategy propagates the changes of
V2 to V4, then propagates the changes of V3 to V4,

then propagates the changes of V4 to V5, and �nally
propagates the changes of V1 to V5.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Comp(V5; fV4g); Inst(V4);

Comp(V5; fV1g); Inst(V1); Inst(V5) i (4)

Note that VDAG strategy (4) \uses" (contains as
a subsequence) the following correct view strategies

for V4 and V5 respectively.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Inst(V4) i

h Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g);

Inst(V1); Inst(V5) i

Also, for any base view Vi (i.e., V1, V2, V3), VDAG
strategy (4) \uses" h Inst(Vi) i. 2

The previous example illustrated that a correct
VDAG strategy uses correct view strategies to

update each view. However, we know that starting
from a set of correct view strategies, we may not
be able to construct a correct VDAG strategy

(Example 1.2, Section 1). In Section 5, we present
an algorithm that �nds correct and e�cient VDAG
strategies. In the rest of this section, we formalize

our notions of correctness and e�ciency of VDAG
strategies. First, we de�ne the concept of a view
strategy \used" by a VDAG strategy.

De�nition 3.2 (View Strategy Used by a

VDAG Strategy) Given a VDAG strategy
�!
E ,

and a view Vj de�ned over views V, the view

strategy used by
�!
E for Vj is the subsequence

�!
Ej

of
�!
E composed of the following expressions: (1)

Comp(Vj ; f:::g); (2) Inst(Vj ); and (3) Inst(Vi),
where Vi 2 V. 2

The next de�nition formalizes the conditions that
are required of a correct VDAG strategy. Condition
C7 states that a correct VDAG strategy must

update each view using a correct view strategy.
Condition C8 states that a correct VDAG strategy
can only propagate changes of Vj after they have

been computed. Condition C8 implicitly imposes
an order between expressions from view strategies
of di�erent views in the VDAG.

De�nition 3.3 (Correct VDAGStrategy) Given
a VDAG G with views V and edges A, a correct

VDAG strategy is a sequence of Comp and Inst

expressions
�!
E such that

� C7: 8Vi 2 V:
�!
E uses a correct view strategy

�!
Ei for Vi.

� C8: 8Vi 2 V: 8Vj 2 V: 8Vk 2 V:
(Comp(Vk; f: : :Vj : : :g) 2

�!
E and

Comp(Vj ; f: : :Vi : : :g) 2
�!
E ) )

(Comp(Vj ; f: : :Vi : : :g) < Comp(Vk; f: : :Vj : : :g)).

2

3.3 Problem Statement
We use a functionWork to represent the amount of

work involved in executing an expression { Comp or
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Inst. Given a VDAG strategy
�!
E = hE1; : : : ; Eni,

we de�ne Work(
�!
E ) as

P
i=1::nWork(Ei). Notice

that Work(Ei) depends on the expressions that
precede Ei, since these expressions change the
database state that Ei is executed in. The problem

we address in this paper is stated as follows.

De�nition 3.4 (Total-Work Minimization

Problem (TWM)) Given a VDAG, �nd the cor-

rect VDAG update strategy
�!
E such thatWork(

�!
E )

is minimized. 2

Since TWM is only concerned with correct VDAG
strategies, henceforth, \VDAG strategies" refer
only to \correct VDAG strategies." Similarly, \view

strategies" refer only to \correct view strategies."
To estimate Work(Ei), we adopt a metric called

linear work metric. This is a simple metric that
focuses on the essential components of the work in-
volved in executing the Comp and Inst expressions.

The algorithms that we develop produce optimal
update strategies under the linear work metric. In
Section 6, we study the relative performance of vari-
ous update strategies for the TPC-D VDAG by exe-

cuting the strategies on a commercial RDBMS, and
measuring the corresponding update windows. Our
study demonstrates that the strategies produced

by our algorithms have signi�cantly shorter update
windows than conventional update strategies. The
results of the study suggest that the linear work

metric employed by our algorithms e�ectively tracks
real-world execution of update strategies.
The linear work metric is based on the following

execution model of Comp expressions. Recall
that Comp typically represents a maintenance
expression with a set of terms (e.g., Expression

(1) of Section 2 has three terms). Each term
performs some computation by reading in views
and delta relations, called operands. For example,
assuming a view W is de�ned over V1, V2, and V3,

Comp(W; fV1g) has a single term that reads in three
operands (�V1, V2, V3) to compute changes to W .
We consider an execution model that evaluates each

term of a Comp expression separately. Thus, the
work estimate for a Comp expression is obtained
by estimating the work for each of its terms and

adding up these estimates.

De�nition 3.5 (LinearWork Metric) The work

estimate for an Inst expression is proportional to
the size of the set of changes being installed. The
estimate for a Comp expression is the sum of the

estimates for each of its terms; the estimate for a

term is proportional to the sum of the sizes of the
operands of the term. 2

EXAMPLE 3.2 Consider the VDAG shown in
Figure 3, with V4 de�ned as �P(V2�V3). Comp(V4;-
fV2g) has one term: �P(�V2�V3). Its work es-
timate is c � (j�V2j + jV3j), where c is a pro-

portionality constant. Similarly, the estimate for
Comp(V4; fV2; V3g) can be derived (by considering
its 3 terms) as c � ((j�V2j + jV3j) + (j�V3j + jV2j) +

(j�V2j + j�V3j)). The work estimate for Inst(V4) is
i � j�V4j, where i is a proportionality constant. 2

The estimates of the linear cost model for com-

pute expressions make sense especially if the delta
relations are small. If so, intermediate results in
the evaluation of a term tend to be small. There-
fore, the work incurred in evaluating a term is of-

ten dominated by scanning into memory the term's
operands.

4 Optimal View Strategy

In this section, we present algorithm MinWorkS-
ingle that produces an optimal view strategy for a
given view, under the linear work metric.

We showed previously that there are numerous

possible view strategies for a single view. Fortu-
nately, under the linear work metric, we can restrict
our attention to 1-way view strategies only.

Theorem 4.1 For any given view, the best 1-way
view strategy is optimal over the space of all view

strategies.

The detailed proof of Theorem 4.1, and of other
theorems and lemmas that follow, are furnished in
[12]. The basic intuition is that in any view strategy

for V that is not 1-way, a Comp expression that
computes the changes of V based on multiple views
can be replaced by a set of Comp expressions each

involving a single view such that the total work of
this set of Comp expressions is smaller than the
work incurred by the replaced Comp expression.

Theorem 4.1 is very signi�cant because it allows
us to limit the search for an optimal view strategy

to the set of 1-way view strategies. Next, we
will present another theorem that helps us avoid
examining all the 1-way view strategies and identify

the best 1-way strategy very e�ciently. The
following example illustrates how the various 1-way
view strategies di�er in e�ciency and it provides

the basic intuition behind the next theorem.
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EXAMPLE 4.1 Let us again consider view V4
(Figure 3) de�ned over V2 and V3, and compare the

two 1-way view strategies for V4 shown below.

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Inst(V4) i (5)

h Comp(V4; fV3g); Inst(V3); Comp(V4; fV2g);

Inst(V2); Inst(V4) i (6)

Clearly, the work incurred by the Inst expressions
are the same. This is not the case for the Comp

expressions. Although the same set of Comp

expressions are used, the view extensions accessed

by the Comp expressions are di�erent.
To illustrate, we use V 0

2
to denote V2 after �V2 is

installed. Similarly, V 0
3
denotes V3 after �V3 is in-

stalled. In general, the expression Comp(V4; fV2g)
in view strategy (5) uses �V2, and V3, and possi-
bly V4. On the other hand, the same expression

Comp(V4; fV2g) in view strategy (6) uses �V2, and
V 0
3
, and possibly V4. Hence, the only di�erence in

the use of Comp(V4; fV2g) in the two view strate-

gies is that V 0
3
is used in view strategy (6), while V3

is used in view strategy (5).
In general, the earlier �V3 is installed in a view

strategy, the more often will V 0
3
be used by the

compute expressions in the view strategy. If it so
happens that V 0

3
is larger than V3, then using V 0

3

is more expensive than using V3. In this case, it is
good to delay the installation of �V3. On the other
hand, if V 0

3
is smaller than V3, then it is good to

install �V3 as early as possible.
In fact, under a linear work metric we can

be much more precise about the installation and

propagation order of the various changes. For
instance, if we �rst propagate and install the
changes of V3 (as in view strategy (6)), any

subsequent compute expression that used to access
V3, will access V 0

3
instead. Hence, the work

incurred by these compute expressions is increased
by c � (jV 0

3
j � jV3j). Similarly if we �rst propagate

and install the changes to V2 (as in view strategy
(5)), the work incurred by subsequent compute
expressions is increased by c � (jV 0

2
j � jV2j). Hence,

in this example, we would want to propagate and
install the changes of V3 before the changes of V2 if
(jV 0

3
j � jV3j) < (jV 0

2
j � jV2j). 2

The example illustrated how an optimal 1-way

view strategy for some view V can be obtained.
Assuming V is de�ned over the views V, we �rst
obtain a view ordering

�!
V that arranges the views

in V in increasing jV 0
i j � jVij values based on the

Algorithm 4.1 MinWorkSingle

Input: V , de�ned over views V

Output: an optimal view strategy
�!
E for V

1.
�!
E  h i

2. For each Vi 2 V estimate jV 0

i j � jVij based

on the current set of changes

3.
�!
V  views in V ordered by increasing
jV 0

i j � jVij values

4. For each Vi 2
�!
V in order

5. Append Comp(V; fVig) to
�!
E

6. Append Inst(Vi) to
�!
E

7. Append Inst(V ) to
�!
E

8. Return
�!
E 3

Figure 5: MinWorkSingle Algorithm

current set of changes. Given
�!
V , an optimal 1-

way view strategy is the one that propagates and
installs the changes in an order consistent with

�!
V .

A 1-way view strategy for V is consistent with a
view ordering

�!
V if for any Inst(Vi) that is before

Inst(Vj ) in the strategy (Vi 6= V , Vj 6= V ), then Vi
is before Vj in

�!
V .

Theorem 4.2 Given a view V de�ned over the

views V, let the view ordering
�!
V arrange the views

in increasing jV 0
i j � jVij values, for each Vi 2 V.

Then, a 1-way view strategy for V that is consistent

with V will incur the least amount of work among
all the 1-way view strategies for V .

Based on Theorem 4.1 and Theorem 4.2, algorithm
MinWorkSingle (Figure 5) produces an optimal
view strategy. The view strategy produced by

MinWorkSingle is shown to be correct in [12].

We summarize the behavior of algorithm Min-
WorkSingle in the following theorem.

Theorem 4.3 Given a view de�ned over n other
views, MinWorkSingle �nds an optimal view strat-
egy for the view in O(n log n) time.

5 Minimizing Total Work
We have seen that for a derived view V , a 1-
way view strategy consistent with a certain view
ordering based on the current set of changes of
the views that V is de�ned on is optimal. In

this section, we show a similar result for VDAG
strategies. That is, for a VDAG, we show that a
\1-way VDAG strategy" consistent with a certain

ordering of all the VDAG views based on the
current set of changes is optimal among all VDAG
strategies. Based on this result, we present an

e�cient algorithm to �nd optimalVDAG strategies.
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Unlike in the case of view strategies, it is not
always possible to obtain a \1-way VDAG strategy"

consistent with a given view ordering. In such
cases, our algorithm �nds a modi�ed view ordering
for which an e�cient \1-way VDAG strategy" that

is consistent with the modi�ed view ordering can
be obtained. In this section, we also identify
large classes of VDAGs for which optimal VDAG

strategies are guaranteed by our algorithm.

5.1 Optimal VDAG Strategies
Intuitively, a VDAG strategy that uses good view
strategies for its derived views tends to incur less

amount of work than one that uses worse view
strategies. In the following theorem we capture the
relationship between optimal VDAG strategies and

the view strategies they use.

Theorem 5.1 Given a VDAG G, a VDAG strat-

egy for G that uses optimal view strategies for all
the views of G is optimal over all VDAG strategies
for G.

Observe that all VDAG strategies for G incur the
same amount of work for their Inst expressions. In
the proof (see [12]), we further argue that a VDAG

strategy that uses optimal view strategies minimizes
the work incurred by the Comp expressions.

FromSection 4, we know that given a view Vi that
is de�ned over views Vi, the 1-way view strategy

�!
Ei

that is consistent with
�!
Vi that orders the views in

Vi in increasing jV 0j � jV j values is optimal. It can
be shown that

�!
Ei is also consistent with the view

ordering
�!
V that orders all of the VDAG views in

increasing jV 0j � jV j values. This view ordering is
called a desired view ordering.

We say a VDAG strategy is a 1-way VDAG
strategy if it only uses 1-way view strategies.
Furthermore, a VDAG strategy is consistent with
�!
V if it only uses view strategies that are consistent
with

�!
V . Clearly, a 1-way VDAG strategy that

is consistent with a desired view ordering uses
only optimal view strategies. It follows from

Theorem 5.1 that this VDAG strategy is optimal.

Theorem 5.2 For any VDAG G, a 1-way VDAG
strategy for G that is consistent with a desired view
ordering is an optimal VDAG strategy for G.

We illustrate the interaction between Theorem 5.1
and Theorem 5.2 by the following example.

EXAMPLE 5.1 Consider the VDAG shown in
Figure 6. Let (jV 0

4
j � jV4j) < (jV 0

2
j � jV2j) <

(jV 0
1
j � jV1j) < (jV 0

3
j � jV3j) < (jV 0

5
j � jV5j) based

on the current set of changes. That is, a desired
view ordering

�!
V is h V4; V2; V1; V3; V5 i.

A 1-way VDAG strategy consistent with the

desired view ordering is

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Comp(V5; fV4g); Inst(V4);

Comp(V5; fV1g); Inst(V1); Inst(V5) i:

The above VDAG strategy is optimal and uses the
following optimal view strategies for V4 and V5:

h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Inst(V4) i:

h Comp(V5; fV4g); Inst(V4); Comp(V5; fV1g);

Inst(V1); Inst(V5) i:

2

5.2 Expression Graphs
We have established that a 1-way VDAG strategy

consistent with a desired view ordering is optimal.
Here, we describe our approach to constructing such
a VDAG strategy.

For a given VDAG G, all possible 1-way VDAG
strategies for G have the same set of expressions,

called the 1-way expressions of G. The set of
1-way expressions of a given VDAG G contains
Comp(Vj ; fVig) whenever view Vj is de�ned over

view Vi in G. Also included is an Inst(Vi) ex-
pression for each view Vi in G. The various 1-way
VDAG strategies for G di�er in the sequencing of

the 1-way expressions of G. The correctness con-
ditions (of Section 3) impose certain dependencies
among these 1-way expressions (e.g., for any two

derived views Vi and Vj, Comp(Vj; fVig) must fol-
low Comp(Vi; f:::g)). Additional dependencies are
imposed when we attempt to �nd VDAG strategies
that are consistent with a particular view order-

ing (e.g., for a derived view V de�ned over views
Vi and Vj , if Vi precedes Vj in the view ordering,
Comp(V; fVig) must precede Comp(V; fVjg)). A 1-

way VDAG strategy for G consistent with a given
view ordering is a permutation of the set of 1-way
expressions of G that satis�es all dependencies.

We use the notion of an expression graph to
capture the set of 1-way expressions of a VDAG

and their dependencies. Given a VDAG G and a
view ordering

�!
V , the expression graph of G with

respect to
�!
V , denoted EG(G;

�!
V ), has the 1-way

expressions of G as its nodes. The expression graph
has an edge from expression Ej to expression Ei if a
dependency dictates that Ej must follow Ei. Once

we construct an expression graph for a VDAG with

8
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Figure 6: VDAG

V

V

V

VComp(V4, {V2}) Inst(V3)Comp(V4, {V3})Inst(V2)

Inst(V4) Inst(V1)Comp(V5, {V4}) Comp(V5, {V1})

Inst(V5)

Figure 7: Expression Graph (EG)

respect to a desired view ordering, we can obtain
an optimal VDAG strategy by topologically sorting
the expression graph.

Theorem 5.3 Given a VDAG G, if EG(G;
�!
V )

is acyclic where
�!
V is a desired view ordering,

a topological sort of EG(G;
�!
V ) yields an optimal

VDAG strategy for G. 2

We now illustrate the generation of an optimal

VDAG strategy, based on this theorem.

EXAMPLE 5.2 Consider the VDAG shown in

Figure 6. Let a desired view ordering
�!
V be

h V4; V2; V1; V3; V5 i based on the current set of
changes (as in Example 5.1).

Figure 7 shows the expression graph constructed
from the VDAG and the view ordering

�!
V . Each

derived view has a set of Comp expressions, one

for each view it is de�ned over. Each view in the
VDAG has an Inst expression.
The edges of the expression graph indicate the de-

pendencies. For instance, the edge from Comp(V5;-

fV4g) to Comp(V4; fV2g) indicates that the former
should appear after the latter in any 1-way VDAG
strategy for this VDAG due to C8.

Some edges of the expression graph are shown
with a label

�!
V to emphasize that the correspond-

ing dependencies are due to the view ordering with

which the 1-way VDAG strategy should be consis-
tent. For instance, the edge from Comp(V4; fV3g)
to Comp(V4; fV2g) indicates that

�!
V requires that

the changes of V2 be propagated before the changes

of V3 (note that V2 < V3 in
�!
V ).

The expression graph of this example happens to
be acyclic. So, a topological sort of the graph is

possible, and yields a 1-way VDAG strategy that is
consistent with the view ordering

�!
V . For instance,

we can obtain the following VDAG strategy:
h Comp(V4; fV2g); Inst(V2); Comp(V4; fV3g);

Inst(V3); Comp(V5; fV4g); Inst(V4);

Comp(V5; fV1g); Inst(V1); Inst(V5) i:

Note that this is the same optimal VDAG strategy
that we discussed in Example 5.1. 2

5.3 Classes of VDAGs with Optimal

VDAG Strategies
We have seen that whenever the constructed ex-

pression graph with respect to a desired view or-
dering is acyclic, we can obtain an optimal VDAG
strategy in a straightforward manner. The acyclic-

ity of the expression graph depends not only on
the VDAG but also on the desired view ordering
being considered. The view ordering in turn de-

pends on the current set of changes. In general, a
given VDAG may have an acyclic expression graph
with one desired view ordering (i.e., based on a set
of changes) and a cyclic expression graph with an-

other desired view ordering (i.e., based on another
set of changes). However, there are speci�c classes
of VDAGs which will always have acyclic expres-

sion graphs. For these classes of VDAGs, we can
always �nd optimal VDAG strategies in a straight-
forward manner no matter what changes are being

propagated. We identify two such classes of VDAGs
below.

De�nition 5.1 (Tree VDAGs) A tree VDAG is
one in which no view is used in the de�nition of

more than one other view. 2

Lemma 5.1 For a tree VDAG, every view ordering

results in an acyclic expression graph. 2

De�nition 5.2 (Uniform VDAGs) A uniform

VDAG is one in which every derived view at Level i
is de�ned over views all of which are at Level (i�1).
2

Lemma 5.2 For a uniform VDAG, every view

ordering results in an acyclic expression graph. 2

Note that the classes of uniform VDAGs and tree
VDAGs are incomparable. The VDAG in Figure 6
is a tree VDAG but not a uniform VDAG. On

the other hand, the TPC-D VDAG (Figure 4) is
a uniform VDAG but not a tree VDAG.

5.4 MinWork Algorithm
Based on our observations above, we develop
an algorithm called MinWork to generate VDAG

strategies that minimize the total amount of work.
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Algorithm 5.1 ModifyOrdering

Input: VDAG G, view ordering
�!
V

Output: modi�ed view ordering
�!
V 0

1.
�!
V 0  h i

2. For l = 0 to MaxLevel(G)

3.
�!
Vl  subsequence of

�!
V composed of all

and only views with a Level value of l

4. Append
�!
Vl to

�!
V 0

5. Return
�!
V 0

3

Algorithm 5.2 MinWork

Input: VDAG G with nodes V and edges A

Output: 1-way VDAG strategy
�!
E

1.
�!
E  h i

2. For each Vi 2 V estimate jV 0

i j � jVij

based on the current set of changes

3.
�!
V  V ordered by increasing jV 0

i j � jVij

4. EG  ConstructEG(G;
�!
V )

5. If EG is acyclic then

6.
�!
E  topological sort of EG

7. Else

8.
�!
V 0  ModifyOrdering(

�!
V )

9. EG0  ConstructEG(G;
�!
V 0)

10.
�!
E  topological sort of EG0

11. Return
�!
E 3

Figure 8: MinWork Algorithm

In particular, MinWork relies on the approach
of expression graph construction in order to �nd

good VDAG strategies. The algorithm is formally
presented in Algorithm 5.2 of Figure 8.

MinWork �rst computes a desired view ordering
based on the current set of changes. Then it con-
structs the expression graph of the VDAG with re-

spect to this desired view ordering. The routine
ConstructEG for constructing the expression graph
is not shown here due to space constraints (see [12]).
ConstructEG includes one node for each 1-way ex-

pression of G. It then connects the nodes based on
dependencies imposed by the correctness conditions
and by the given view ordering. If the constructed

expression graph is acyclic, MinWork obtains the
optimal VDAG strategy by a topological sort of the
expression graph. Otherwise, it computes a mod-

i�ed view ordering (using ModifyOrdering shown
in Algorithm 5.1) which is guaranteed to yield an
acyclic expression graph of the VDAG . Then, it
generates a VDAG strategy for the input VDAG

that is consistent with this modi�ed view ordering.

It is clear that given a VDAG that results in

an acyclic expression graph, MinWork produces an

optimal VDAG strategy. This leads to the following
result that follows from Theorem 5.3, Lemma 5.1

and Lemma 5.2.

Theorem 5.4 Given a VDAG G, and a desired

view ordering
�!
V , MinWork produces optimal VDAG

strategies if EG(G;
�!
V ) is acyclic. In particular,

MinWork always produces optimal VDAG strategies
for tree VDAGs and uniform VDAGs. 2

When the given VDAG results in a cyclic expres-
sion graph with respect to the desired view ordering,
MinWork produces a 1-way VDAG strategy that is

consistent with a view ordering
�!
V0 that is produced

byModifyOrdering based on the desired view order-

ing. ModifyOrdering produces
�!
V0 by �rst ordering

the views based on their Level values (i.e., lower

level views �rst). ModifyOrdering then orders the
views with the same Level value based on the de-
sired view ordering. The following theorem ensures
that MinWork will always be able to generate a 1-

way VDAG strategy no matter how complex the
input VDAG is.

Theorem 5.5 Given a VDAG G and a view or-
dering

�!
V , we can come up with a view ordering

�!
V0

= ModifyOrdering(G,
�!
V ) such that EG(G,

�!
V0) is

acyclic. That is, MinWork will always succeed in
producing a VDAG strategy. 2

The use of a modi�ed view ordering when a

desired view ordering yields cyclic expression graphs
may lead MinWork to produce sub-optimal VDAG
strategies. However, the modi�ed view ordering

re
ects as much of the desired view ordering as
possible. This results in MinWork producing
e�cient plans, when it misses optimal plans.

In [12], we show that MinWork has a worst
case time complexity of O(n3) where n is the
number of views in the VDAG. We also discuss

howMinWork can be implemented very easily using
stored procedures.

Finally, we also develop in [12] a di�erent search

algorithm that �nds the optimal 1-way VDAG
strategy for any VDAG. As expected, the algorithm
is less e�cient than MinWork and has a worst case

time complexity of O(n! � n3).

6 Experiments
We have developed algorithms that minimize the
work incurred in view or VDAG strategies. How-
ever, minimizing the work incurred may not trans-

late to the minimization of the update window.
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In order to understand how well the strategies
generated by our algorithms perform in practice, we

conducted a series of experiments. In particular,
we tested various strategies using Microsoft SQL
Server 6.5 running on a workstation with a Pentium

II 300 MHz processor and 64 MB of RAM. In our
experiments, we measured the actual time it took
to execute the strategies. The results show that the

strategies generated by our algorithms do indeed
yield short update windows.

In all of the experiments, we used the TPC-D

warehouse shown in Figure 4. The base views CUS-
TOMER (denoted C for conciseness), ORDER (O),
LINEITEM (L), SUPPLIER (S), NATION (N )

and REGION (R) are copies of TPC-D relations
populated with synthetic data obtained from [5].
The derived views Q3, Q5 and Q10 were de�ned
using the TPC-D \Shipping Priority" query, \Lo-

cal Supplier" query, and \Returned Item Report-
ing" query respectively.

Unless otherwise speci�ed, the remote informa-
tion sources were changed so that base views C, O,
L, S, and N decreased in size by 10%. Base view

R, the smallest of the six, was left unchanged. Ac-
cording to the sizes of the base views, the desired
view ordering is h L;O;C; S;N;R i.
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Figure 9: Q3 View Strategies

Experiment 1: In the �rst experiment, we
examined the various view strategies for Q3. Since
Q3 is only de�ned over 3 views, there were only 13

view strategies to compare, one from each partition.
Figure 9 shows the result of the experiment. Each
bar depicts a view strategy, and the height of the

bar gives the amount of time it took to perform the
view strategy. The graph shows numerous results.

First, the graph shows that 1-way view strategies

update Q3 in the least amount of time.

Second, the graph shows that theMinWorkSingle

view strategy, which propagates the changes of L,

then of O, and then of C, does not update Q3
in the least amount of time. The view strategy

that performs the best in this case propagates the
changes of L, then of C and then of O. The
update window of theMinWorkSingle view strategy

is however very close to the optimal. Recall that
we proved thatMinWorkSingle produces an optimal
view strategy under the linear work metric. In the

experiment, we used a real system whose behavior
naturally deviates from the strictly linear work
metric. Thus, MinWorkSingle ends up with a
strategy that is slightly away from the optimum.

Finally, the graph shows that various view strate-
gies have signi�cantly di�erent update windows.

Experiment 2: In the next experiment, we
focused on the derived view Q5 which is de�ned

over the 6 base views. Since Q5 is much more
complex than Q3, it was too time consuming to
examine all of the view strategies of Q5. Instead,

we examined only theMinWorkSingle view strategy
and the dual-stage view strategy. Recall that the
dual-stage view strategy is the one with a compute
stage and an install stage, as proposed in [3]. The

results show that the update window of the dual-
stage view strategy is over 6 times longer than that
of the MinWorkSingle view strategy.

Experiment 3: In this experiment, we again focus

on Q3. Each of C, O, and L is decreased in size by
a percentage p of its initial size, for various values
of p (from 1% to 10%). When comparing view

strategies, we only considered the MinWorkSingle
view strategy, the best 2-way view strategy in
Figure 9, and the dual-stage view strategy. For

all values of p, the MinWorkSingle view strategy
performed better than both the 2-way view strategy
and the dual-stage view strategy.

Experiment 4: So far, we have considered up-

dating a single view. In this experiment, we study
the quality of MinWork VDAG strategies. Note
that, since the TPC-D VDAG is uniform, Min-

Work is guaranteed to pick an optimal VDAG strat-
egy under the linear work metric. We check how
good the MinWork VDAG strategy is by com-
paring it with two others: a \dual-stage" VDAG

strategy that only uses dual-stage view strategies,
and a 1-way VDAG strategy that propagates the
changes in an order opposite that of the MinWork

VDAG strategy. MinWork uses the view ordering
h L;O;C; S;N;R i, and so the third VDAG strategy
in our experiment uses the order h R;N; S;C;O; L i.

We call this strategy RNSCOL. As expected, the

1



MinWork strategy performed the best. In particu-
lar, it is 5.6 times better than the dual-stage VDAG

strategy, and is 1.11 times better than the RNSCOL
VDAG strategy.

More details about the experiments and an
extended discussion of the results appear in [12].

7 Related Work
There has been a signi�cant amount of work in

minimizing warehouse maintenance time. The
techniques proposed solve various sub-problems.

One of the sub-problems is the e�cient main-
tenance of base views ([11],[7],[1]). In this paper,
we concentrate on derived view maintenance. Un-
like base view maintenance, derived view mainte-

nance competes with OLAP queries for resources,
and thus is one of the main problems that today's
warehouses face.

Another important sub-problem is choosing the
views to materialize in the warehouse so that

some measure like query time, is minimized while
satisfying a given storage or maintenance time
constraint ([9],[10],[2],[16]). The warehouse design

algorithms are complementary to the algorithms we
present. That is, most of the design algorithms do
not specify how views are actually updated. Our
MinWork algorithm can be used for this purpose.

Another sub-problem that needs to be answered

is deciding when to update the warehouse [4]. The
algorithms we present are used when changes are
actually propagated. Hence, the algorithms we
present are complementary.

The only work that we know of that is concerned
with the actual algorithm for propagating changes

is [13]. More speci�cally, [13] proposed to represent
the changes of summary tables as a summary delta.
Since a summary delta can be incorporated into a

summary table very e�ciently, the main problem is
computing the summary delta. The algorithms we
present here can be used to compute the summary

deltas more e�ciently

Finally, the only work that we know of that

handles a hierarchy of views instead of a single view
is [15]. In [15], they focus more on the problem of
maintaining views in a distributed warehouse (i.e.,

a set of data marts) consistently.

8 Conclusion
We have solved the \total-work minimization"
(TWM) problem that warehouse administrators
face today. To solve TWM, we presented Min-

WorkSingle that identi�es optimal view strategies

for updating single views. We then presented Min-
Work, an e�cient heuristic algorithm that �nds an

optimal solution for a large class of VDAGs. Min-
Work signi�cantly extends the 1-way view strategy
([8]) to the more practical setting of a VDAG of

views. Experiments on a TPC-D VDAG showed
that the strategies produced by MinWorkSingle
and MinWork are very e�cient under commercial

RDBMS work metrics, and shrink the update win-
dow signi�cantly.
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